大连理工大学马松获国家专利权
买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
龙图腾网获悉大连理工大学申请的专利一种针对最优路径规划的分布式反馈混联注意力网络模型获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN116011691B 。
龙图腾网通过国家知识产权局官网在2025-07-15发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202211719273.2,技术领域涉及:G06Q10/047;该发明授权一种针对最优路径规划的分布式反馈混联注意力网络模型是由马松;张一凡;孙涛;孙希明;林鹏;刘波设计研发完成,并于2022-12-30向国家知识产权局提交的专利申请。
本一种针对最优路径规划的分布式反馈混联注意力网络模型在说明书摘要公布了:本发明属于多智能体系统路径规划技术领域,具体涉及一种针对最优路径规划的分布式反馈混联注意力网络模型。本发明提供了一种基于分布式结构的带有反馈混联注意力的生成对抗神经网络模型,并获得了更好的路径规划效果。本发明通过上卷积将聚合后的图像特征恢复到原图像水平,同时将高维图像和低维图像进行融合,从而可以完成对图像的多维度特征提取,最终得到预测路径图像。之后将预测路径图和真实路径图输入到判别器进行迭代学习,使得生成的路径预测图更加贴近真实路径图。所以该模型能够精确地生成路径预测图。
本发明授权一种针对最优路径规划的分布式反馈混联注意力网络模型在权利要求书中公布了:1.一种针对最优路径规划的分布式反馈混联注意力网络模型,其特征在于,步骤如下: 步骤1:生成真实路径图像 1.1准备环境图 环境图是由黑白两种颜色构成的灰度图,静态障碍物由黑色表示,可运动区域由白色表示,图中两点分别代表运动的起始点和终止点; 1.2选择改进的随机搜索树算法生成真实路径 改进的随机搜索树算法的输入为环境图,将图中的起始点作为搜索树的根节点,在环境图上进行随机采样,新的采样点为Xrand,在搜索树中找寻距离Xrand最近的点,记为Xnear,连接Xrand和Xnear,Xnear指向Xrand的方向为搜索树生长的方向,选取一个步长Step作为随机树生长的距离,若Xnear与Xrand之间的距离小于Step,则Xrand即为下一个新的节点Xnew,若Xrand与Xnear之间的距离大于Step,则从Xnear沿树生长的方向计算一个Step距离,得到新的节点Xnew;之后判断Xnear到Xnew的连线是否穿过障碍物,如果穿过代表该路径无效,放弃节点Xnew;如果没有穿过代表该路径有效,则将Xnew加入到搜索树中;以Xnew为中心,在一定半径范围内找寻与Xnew相邻节点Xnearest,计算起始点到Xnearest的路径距离与Xnearest到Xnew的路径距离之和,选取路径距离最小的节点Xmin作为新的父节点代替原有的采样点Xnear,并且为Xmin的相邻节点重新布线,使得所有节点到起始点的距离总和最小;当终止点进入到搜索树节点的一定范围内,连接终止点和末端节点,所有起点到终点的路径集合为真实路径集; 步骤2:构建反馈混联注意力机制模型 2.1混联注意力网络 混联注意力网络主体由通道注意力机制、空间注意力机制和位置注意力机制三部分组成,空间注意力和位置注意力机制并联再与通道注意力机制串联,空间注意力模块利用特征的空间关系得到特征间的相关性,位置注意模块将范围更广的上下文信息编码为局部特征,从而增强其表示能力; 2.2循环反馈网络 首先将初始特征x经过卷积核为1*1的卷积网络Conv2,另一部分经过卷积核为1*1的卷积网络Conv3、卷积核为3*3的卷积网络Conv4和卷积核为1*1的卷积网络Conv5,二者求和为第一次提取特征的结果之后开始进行循环反馈过程,将t=0时刻得到的结果正反馈到输入位置,此时经通过下面Conv3、Conv4和Conv5的卷积网络,所有时刻的循环反馈过程表示如下: 其中F表示卷积运算,下标表示卷积模块名称,上标表示第t次时刻下的卷积,x表示输出特征输入; 整个循环反馈过程如图所示,初始特征通过并联的位置注意力机制和空间注意力机制,将结果拼接后输入通道注意力机制,同时初始特征输入循环反馈网络,将最后一次反馈的输出与Conv1之后的结果相加,整个流程如下: 其中FPSCAF表示反馈混联注意力模块的输出结果,FConv1表示经过卷积模块Conv1的输出,FCA表示经过通道注意力模块的输出,FPA表示经过位置注意力模块的输出,FSA经过空间注意力模块的输出,经过t次反馈卷积之后的输出;步骤3:生成对抗网络 3.1分布式结构的生成器网络 生成器网络基于U-net的网络架构,该网络分为编码器和解码器两部分;编码器主体由分布式结构的卷积和反馈混联注意力模块构成;生成器的损失定义为生成映射和目标映射的sigmoid交叉熵损失函数,生成器部分损失表达为: CEg,t=-[t*lnM+1-g*ln1-M]13 其中g,t代表两组输入,M表示经过sigmoid函数的结果,CE为两组输入的交叉熵损失函数; 3.2判别器 判别器网络包括两组输入,一组为环境图和真实路径图像,判别器网络应将其判别为真,另一对为全局环境图和基于分布式结构的带有反馈混联注意力机制的神经网络预测路径图,判别器网络应将其判别为假; 步骤4:对输入的环境图进行路径预测 首先根据输入的环境图,通过步骤1的随机搜索树算法获得真实路径图,然后把环境图输入到基于分布式结构的带有反馈混联注意力机制的生成器生成路径预测图,通过不断迭代学习,最终得到针对初始环境图的路径预测图。
如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人大连理工大学,其通讯地址为:116024 辽宁省大连市甘井子区凌工路2号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。