河北工业大学杨泽青获国家专利权
买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
龙图腾网获悉河北工业大学申请的专利基于机器视觉和X射线的水果品质综合分级方法和装置获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN114354637B 。
龙图腾网通过国家知识产权局官网在2025-08-22发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202210098250.8,技术领域涉及:G01N21/88;该发明授权基于机器视觉和X射线的水果品质综合分级方法和装置是由杨泽青;李志蒙;胡宁;孙凌宇;丁湘燕;齐正磐;段书用设计研发完成,并于2022-01-20向国家知识产权局提交的专利申请。
本基于机器视觉和X射线的水果品质综合分级方法和装置在说明书摘要公布了:本发明为基于机器视觉和X射线的水果品质综合分级方法和装置,该方法首先采集待分级水果的外观图像,计算果面缺陷、果形大小和色泽三种特征的特征值,依据因子分析法和专家经验将水果外观划分为多个等级,对水果外观图像进行标注并生成标签;其次,搭建外观分级网络,将训练后的外观分级网络作为第一初级分类器;然后采集待分级水果的X射线图像并标注,基于人工特征和CNN特征构建三个分类器,采用决策级融合方式对三个分类器的结果进行融合建立第二初级分类器;最后根据水果品质综合分级规则建立次级分类器输出分级结果。将外观品质和内部缺陷信息相结合,完成了水果品质的综合分级,分级指标更加全面,满足了对高品质水果的分级需求。
本发明授权基于机器视觉和X射线的水果品质综合分级方法和装置在权利要求书中公布了:1.一种基于机器视觉和X射线的水果品质综合分级方法,其特征在于,该方法包括以下步骤: 第一步、通过CCD图像采集模块获取待分级水果的外观图像,对外观图像进行预处理,大量的外观图像构成外观图像数据库;提取预处理后的外观图像的缺陷区域,得到外观缺陷图像数据库; 第二步、计算果面缺陷、果形大小和色泽三种特征的特征值,果面缺陷包含的特征有:缺陷总面积、缺陷个数、缺陷总面积与缺陷个数之比;果形大小包含的特征有:椭圆度、周长、投影面积、高度、宽度、长宽比以及矩形度;色泽包含的特征有:R通道均值与方差、G通道均值与方差、R通道均值与G通道均值之比; 针对外观缺陷图像数据库中的外观缺陷图像,提取各个果面缺陷特征的特征值;针对外观图像数据库中的外观图像,提取果形大小特征和色泽特征的特征值,得到果面缺陷、果形大小和色泽这三个特征的特征值数据表;利用因子分析法对外观图像进行标注,包括使用主成分分析法提取特征值数据表中各个特征的主成分,并计算各个主成分的方差贡献率,计算各个外观图像的综合得分,综合得分为各个主成分与其相应方差贡献率的线性组合,然后将各个外观图像的综合得分由高到低进行排序,并依据专家经验将待分级水果的外观品质分为优等、一等、二等共三个等级,根据此分级结果对外观图像进行标注并生成标签; 第三步、搭建外观分级网络,将训练后的外观分级网络作为第一初级分类器; 第四步、通过X射线图像采集模块获取待分级水果的X射线图像,建立X射线图像数据库;对X射线图像进行预处理,得到预处理后的X射线图像;对经过X射线成像的水果样本进行切片处理,依据切片反应的缺陷信息对预处理后的X射线图像进行标注,标注信息为是否存在缺陷,得到标注后的X射线图像; 第五步、提取预处理后的X射线图像的HOG特征和LBP特征,利用SVM模型对这两个特征分别构建分类器;针对预处理后的X射线图像,基于神经网络构建CNN分类器;将三个分类器的分类结果进行决策级融合得到第二初级分类器,对待分级水果内部缺陷进行分类; 第六步、制定水果品质综合分级规则,基于集成学习策略,将第一初级分类器和第二初级分类器的输出作为次级分类器的输入,次级分类器根据水果品质综合分级规则输出分级结果,至此完成整个分级过程。
如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人河北工业大学,其通讯地址为:300130 天津市红桥区丁字沽光荣道8号河北工业大学东院330#;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。