Document
拖动滑块完成拼图
个人中心

预订订单
商城订单
发布专利 发布成果 人才入驻 发布商标 发布需求

请提出您的宝贵建议,有机会获取IP积分或其他奖励

投诉建议

在线咨询

联系我们

龙图腾公众号
首页 专利交易 IP管家助手 科技果 科技人才 积分商城 国际服务 商标交易 会员权益 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索
当前位置 : 首页 > 专利喜报 > 北京理工大学唐山研究院;北京理工大学车海莺获国家专利权

北京理工大学唐山研究院;北京理工大学车海莺获国家专利权

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

龙图腾网获悉北京理工大学唐山研究院;北京理工大学申请的专利基于TransUNet的肺结节分割算法获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN118628512B

龙图腾网通过国家知识产权局官网在2025-11-11发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202410893732.1,技术领域涉及:G06T7/11;该发明授权基于TransUNet的肺结节分割算法是由车海莺;吴国承设计研发完成,并于2024-07-04向国家知识产权局提交的专利申请。

基于TransUNet的肺结节分割算法在说明书摘要公布了:本发明涉及分割算法技术领域,特别是涉及一种基于TransUNet的肺结节分割算法,步骤包括,将TransUNet网络中的Transformer层替换为MaxViT网络,形成MM‑TransUNet网络作为分割模型,采用MM‑TransUNet网络进行分割模型训练;每一轮次的训练完成之后,保存本轮次分割模型参数,对比分割模型得到的检测结果和实际结果计算损失,根据损失对分割模型进行参数调整;读取训练阶段中保存的最优参数,将最优参数代入分割模型得到最优肺结节分隔模型;应用MM‑TransUNet网络作为分割模型能够有效提高肺结节的分割精度;MM‑TransUNet将残差机制、CNN与多轴向自注意力机制进行结合,作为编码器模块,起到了更完整地提取肺结节特征的作用。

本发明授权基于TransUNet的肺结节分割算法在权利要求书中公布了:1.一种基于TransUNet的肺结节分割算法,步骤包括: S1:获取肺部CT图像数据集,并对肺部CT图像数据集进行分割肺实质、提取感兴趣区域和数据增强操作; S2:将数据增强操作后的肺部CT图像数据集划分为训练集和测试集; S3:基于TransUNet网络结构构建分割模型,利用训练集对分割模型进行训练;每一轮次的训练完成之后,保存本轮次分割模型参数,对比分割模型得到的检测结果和实际结果计算损失,根据损失对分割模型进行参数调整; S4:读取训练阶段中保存的最优参数,将最优参数代入分割模型得到最优肺结节分隔模型; S5,利用测试集对最优肺结节分隔模型进行测试,采用评价指标对最优肺结节分隔模型的模型精度进行评估; 其特征在于,步骤S3中,将TransUNet网络中的Transformer层替换为MaxViT网络,形成MM-TransUNet网络作为分割模型,采用MM-TransUNet网络进行分割模型训练具体过程为; S301:将训练集中的图像输入编码器中,先使用残差机制配合卷积神经网络对输入图像逐层进行浅层特征提取,提取出浅层特征图; S302:浅层特征图经过MaxViT模块处理,充分感知深层的上下文信息,进一步深层特征学习,提取图像深层特征图; S303:将浅层特征图和深层特征图输入解码器,将浅层特征图和深层特征图进行连接和上采样,逐层进行特征融合,最后输出肺结节分割图像; S304:通过损失函数计算步骤S303输出的肺结节分割图像与实际肺结节分割图像之间的损失,调整MM-TransUNet网络中的参数,更新MM-TransUNet网络模型,返回步骤S301进行新一轮的训练,至训练集中所有图片训练完成。

如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人北京理工大学唐山研究院;北京理工大学,其通讯地址为:063000 河北省唐山市路北区建设南路57号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。

以上内容由龙图腾AI智能生成。

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。