Document
拖动滑块完成拼图
个人中心

预订订单
商城订单
发布专利 发布成果 人才入驻 发布商标 发布需求

请提出您的宝贵建议,有机会获取IP积分或其他奖励

投诉建议

在线咨询

联系我们

龙图腾公众号
首页 专利交易 IP管家助手 科技果 科技人才 积分商城 国际服务 商标交易 会员权益 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索
当前位置 : 首页 > 专利喜报 > 中国科学院自动化研究所吴书获国家专利权

中国科学院自动化研究所吴书获国家专利权

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

龙图腾网获悉中国科学院自动化研究所申请的专利动态知识图谱预测方法、装置、电子设备及存储介质获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN116796001B

龙图腾网通过国家知识产权局官网在2025-12-05发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202310628310.7,技术领域涉及:G06F16/36;该发明授权动态知识图谱预测方法、装置、电子设备及存储介质是由吴书;刘强;王亮;张孟奇;陈丹丹;徐辉杰设计研发完成,并于2023-05-30向国家知识产权局提交的专利申请。

动态知识图谱预测方法、装置、电子设备及存储介质在说明书摘要公布了:本发明涉及自然语言处理技术领域,提供一种动态知识图谱预测方法、装置、电子设备及存储介质,该方法获取历史事件语料;将历史事件语料输入至图谱构建模型,得到当前时刻的知识图谱。该图谱构建模型通过隐含关系提取模块及关系编码模块实现对历史事件语料中隐含关系的提取及编码,通过实体时序表征模块得到当前时刻的知识图谱,使得到的知识图谱不仅包含有历史事件语料中各实体已经存在的关系信息,还包含在历史事件语料中隐含的各实体的关联关系,知识图谱的准确性更高,使知识图谱后续应用效果更佳。而且,通过历史事件语料的不断更新,可以实现知识图谱的准确动态预测。本发明已受到了国家重点研发计划项目2019YQ1601的资助。

本发明授权动态知识图谱预测方法、装置、电子设备及存储介质在权利要求书中公布了:1.一种动态知识图谱预测方法,其特征在于,包括: 获取历史事件语料; 将所述历史事件语料输入至图谱构建模型,得到所述图谱构建模型输出的当前时刻的知识图谱; 其中,所述图谱构建模型包括结构编码器、隐含关系提取模块、关系编码模块和实体时序表征模块,所述图谱构建模型基于事件语料样本训练得到; 所述结构编码器用于提取所述历史事件语料中每一历史时刻的各实体和各实体之间的关系信息,基于所述各实体和所述关系信息,确定每一历史时刻的知识图谱,并对每一历史时刻的知识图谱进行结构编码,得到每一历史时刻的各实体的特征表达; 所述隐含关系提取模块用于基于每一历史时刻的各实体的特征表达,计算每一历史时刻的各实体之间的第一关联关系和任意两个历史时刻的各实体之间的第二关联关系,并基于所述第一关联关系和所述第二关联关系,构建实体关联关系图; 所述关系编码模块用于对所述实体关联关系图进行编码,得到所述实体关联关系图中各实体的邻居表征; 所述实体时序表征模块用于基于每一历史时刻的各实体的特征表达和所述实体关联关系图中各实体的邻居表征,提取所述当前时刻各实体的时序表征,并基于所述当前时刻各实体的时序表征,构建所述当前时刻的知识图谱; 基于每一历史时刻的各实体的特征表达,计算每一历史时刻的各实体之间的第一关联关系和任意两个历史时刻的各实体之间的第二关联关系,包括: 基于每一历史时刻的各实体的特征表达,计算每一历史时刻不存在所述关系信息的每两个实体之间的第一关联关系和任意两个历史时刻不存在所述关系信息的每两个实体之间的第二关联关系; 基于每一历史时刻的各实体的特征表达,计算每一历史时刻的各实体之间的第一关联关系和任意两个历史时刻的各实体之间的第二关联关系,包括: 基于每一历史时刻的各实体的特征表达,使用余弦相似度度量函数计算每一历史时刻的各实体之间的第一关联关系和任意两个历史时刻的各实体之间的第二关联关系。

如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人中国科学院自动化研究所,其通讯地址为:100190 北京市海淀区中关村东路95号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。

以上内容由龙图腾AI智能生成。

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。