Document
拖动滑块完成拼图
个人中心

预订订单
商城订单
发布专利 发布成果 人才入驻 发布商标 发布需求

请提出您的宝贵建议,有机会获取IP积分或其他奖励

投诉建议

在线咨询

联系我们

龙图腾公众号
首页 专利交易 IP管家助手 科技果 科技人才 积分商城 国际服务 商标交易 会员权益 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索
当前位置 : 首页 > 专利喜报 > 云南大学杨云获国家专利权

云南大学杨云获国家专利权

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

龙图腾网获悉云南大学申请的专利基于表征数据增强和损失再平衡的长尾图像识别方法获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN116030302B

龙图腾网通过国家知识产权局官网在2025-12-19发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202310019861.3,技术领域涉及:G06V10/764;该发明授权基于表征数据增强和损失再平衡的长尾图像识别方法是由杨云;杨鹏;杜飞设计研发完成,并于2023-01-06向国家知识产权局提交的专利申请。

基于表征数据增强和损失再平衡的长尾图像识别方法在说明书摘要公布了:本发明公开了基于表征数据增强和损失再平衡的长尾图像识别方法,先长尾图像预处理:然后不同数据集按照不同的不平衡比例进行构造训练集和测试集;构造随机数据增强列表;获得每一个类别的采样权重,通过翻转头部类到尾部类的样本数量加上权重的缩放因子,再将该权重转为一个Tensor向量;将权重作为参数构建反采样训练集和加权损失的权重;建立长尾数据分类模型;构建一阶段的训练范式,使用双边分支结构自适应地从未加权分支转变到加权分支;训练初始,未加权分支学习长尾图像的特征,随着训练轮次的增加逐渐转移到使用重加权分类分支来学习如何对长尾数据进行分类,从而完成原始数据学习长尾图像的表征和对长尾图像进行识别。

本发明授权基于表征数据增强和损失再平衡的长尾图像识别方法在权利要求书中公布了:1.基于表征数据增强和损失再平衡的长尾图像识别方法,其特征在于,按照以下步骤进行: 步骤S1,长尾图像预处理: 步骤S2,不同数据集按照不同的不平衡比例进行构造训练集和测试集,在长尾数据分布中训练集的不平衡率为[500,256,100,50,10],利用python分别构造不同比例的训练集,测试集则保持平衡; 步骤S3,构造随机数据增强列表,使用python中的transform工具包构造需要使用的随机增强列表,数据增强列表的顺序为图片随机裁剪、图片随机翻转、改变图像的属性,最后进行归一化; 步骤S4,获得每一个类别的采样权重,通过翻转头部类到尾部类的样本数量加上权重的缩放因子,再将该权重转为一个Tensor向量;其中,计算每个类别的权重表达式如下: 其中,N代表权重的缩放因子,W表示类别的权重;公式1计算得出每个类别样本数量占总体样本数量的权重并赋值给a,用于公式2计算每个类别的权重; 步骤S5,将权重作为参数使用pytorch工具包构建反采样训练集和加权损失的权重; 步骤S6,建立长尾数据分类模型; 步骤S7,构建一阶段的训练范式,使用双边分支结构自适应地从未加权分支转变到加权分支;训练初始,未加权分支学习长尾图像的特征,随着训练轮次的增加逐渐转移到使用重加权分类分支来学习如何对长尾数据进行分类,从而完成原始数据学习长尾图像的表征和对长尾图像进行识别。

如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人云南大学,其通讯地址为:650091 云南省昆明市五华区翠湖北路2号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。

以上内容由龙图腾AI智能生成。

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。